Logotipo del repositorio
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
Logotipo del repositorio
  • ¿Qué es SIC?
  • Estadísticas
  • Guía de Usuario
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Inicio
  • Personal de Investigación
  • Unidad Académica
  • Publicaciones
  • Colecciones
    • Datos de investigación
    • Divulgación Científica
    • Personal de investigación
    • Protecciones
    • Proyectos externos
    • Proyectos internos
    • Publicaciones
    • Tesis
  1. Inicio
  2. Universidad de Santiago de Chile
  3. Publicaciones
  4. PM2.5 forecasting in Coyhaique, the most polluted city in the Americas
 
  • Details
Options

PM2.5 forecasting in Coyhaique, the most polluted city in the Americas

ISSN
2212-0955
Date Issued
2020
Author(s)
Perez-Jara, P 
Departamento de Física 
Menares, Camilo
Ramirez, Camilo
DOI
https://doi.org/10.1016/j.uclim.2020.100608
Abstract
Coyhaique is a southern Chilean city with a population of approximately 64,000 habitants. In spite of its small size, Coyhaique has been identified as the city with highest annual PM2.5 concentrations of the Americas (including south America, central America and north America). Episodes of high pollution are concentrated on the fall- winter season when meteorological conditions do not favor atmospheric particle dispersion and extended use of wood stoves is responsible for more than 99% of the emissions. In Chile, the 24 h average of PM2.5 concentration is classified in four ranges: fair, bad, very bad and critical. We have developed a neural network model and a linear model aimed to forecast the maximum of the 24 h moving average one day in advance. Input variables for the models are hourly values of PM2.5 at 18 h and 19 h of the present day, measured and forecasted temperature, wind speed and precipitation and measured values of NO2, CO and O3 concentrations. The neural network model is slightly more accurate than the linear model. We are able to anticipate the observed range in 75% of the cases, and critical days in 84% of the cases. © 2020 Elsevier B.V.
Subjects

Air quality forecasti...

Meteorology forecast

Neural networks

Particulate matter

PM2.5

...
Universidad de Santiago de Chile Avenida Libertador Bernardo O'Higgins nº 3363. Estación Central. Santiago Chile. admin.dspace@usach.cl © 2023 The DSpace CRIS Project - Modificado por VRIIC USACH.
...