Options
A convenient omitted variable bias formula for treatment effect models
ISSN
0165-1765
Date Issued
2019
Author(s)
Abstract
Generally, determining the size and magnitude of the omitted variable bias (OVB) in regression models is challenging when multiple included and omitted variables are present. Here, I describe a convenient OVB formula for treatment effect models with potentially many included and omitted variables. I show that in these circumstances it is simple to infer the direction, and potentially the magnitude, of the bias. In a simple setting, this OVB is based on mutually exclusive binary variables, however I provide an extension which loosens the need for mutual exclusivity of variables, deriving the bias in difference-in-differences style models with an arbitrary number of included and excluded “treatment” indicators. © 2018 Elsevier B.V.