Logotipo del repositorio
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
Logotipo del repositorio
  • ¿Qué es SIC?
  • Estadísticas
  • Guía de Usuario
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Inicio
  • Personal de Investigación
  • Unidad Académica
  • Publicaciones
  • Colecciones
    • Datos de investigación
    • Divulgación Científica
    • Personal de investigación
    • Protecciones
    • Proyectos externos
    • Proyectos internos
    • Publicaciones
    • Tesis
  1. Inicio
  2. Universidad de Santiago de Chile
  3. Publicaciones
  4. SOLVING THE INVERSE PROBLEM FOR AN ORDINARY DIFFERENTIAL EQUATION USING CONJUGATION
 
  • Details
Options

SOLVING THE INVERSE PROBLEM FOR AN ORDINARY DIFFERENTIAL EQUATION USING CONJUGATION

ISSN
2158-2505
Date Issued
2020
Author(s)
Garcia-Mokina, G 
Departamento de Matemática y Ciencia de la Computación 
Alfaro Vigo, Daniel G.
Alvarez, Amaury C.
Chapiro, Grigori
Moreira, Carlos G.
DOI
https://doi.org/10.3934/JCD.2020008
Abstract
We consider the following inverse problem for an ordinary differential equation (ODE): given a set of data points P = [(ti, xi), i = 1,., N], find an ODE x'(t) = v(x) that admits a solution x(t) such that xi x(ti) as closely as possible. The key to the proposed method is to find approximations of the recursive or discrete propagation function D(x) from the given data set. Afterwards, we determine the field v(x), using the conjugate map defined by Schroder's equation and the solution of a related Julia's equation. Moreover, our approach also works for the inverse problems where one has to determine an ODE from multiple sets of data points. We also study existence, uniqueness, stability and other properties of the recovered field v(x). Finally, we present several numerical methods for the approximation of the field v(x) and provide some illustrative examples of the application of these methods. © American Institute of Mathematical Sciences.
Subjects

Functional equations

Julia's equation

Parameter estimation

Schröder's functional...

...
Universidad de Santiago de Chile Avenida Libertador Bernardo O'Higgins nº 3363. Estación Central. Santiago Chile. admin.dspace@usach.cl © 2023 The DSpace CRIS Project - Modificado por VRIIC USACH.
...