Logotipo del repositorio
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
Logotipo del repositorio
  • ¿Qué es SIC?
  • Estadísticas
  • Guía de Usuario
  • English
  • Español
  • Iniciar sesión
    ¿Nuevo Usuario? Pulse aquí para registrarse¿Has olvidado tu contraseña?
  • Inicio
  • Personal de Investigación
  • Unidad Académica
  • Publicaciones
  • Colecciones
    • Datos de investigación
    • Divulgación Científica
    • Personal de investigación
    • Protecciones
    • Proyectos externos
    • Proyectos internos
    • Publicaciones
    • Tesis
  1. Inicio
  2. Universidad de Santiago de Chile
  3. Publicaciones
  4. NON-CROSSING MONOTONE PATHS AND BINARY TREES IN EDGE-ORDERED COMPLETE GEOMETRIC GRAPHS
 
  • Details
Options

NON-CROSSING MONOTONE PATHS AND BINARY TREES IN EDGE-ORDERED COMPLETE GEOMETRIC GRAPHS

ISSN
0236-5294
Date Issued
2021
Author(s)
Perez-Lantero, P 
Departamento de Matemática y Ciencia de la Computación 
Duque, F.
Fabila-Monroy, R.
Hidalgo-Toscano, C.
DOI
https://doi.org/10.1007/s10474-021-01166-2
Abstract
An edge-ordered graph is a graph with a total ordering of its edges. A path P = v(1)v(2) . . . v(k) in an edge-ordered graph is called increasing if (v(i)v(i) + 1) < (v(i)+(1)v(i)+2) for all i = 1, . . . , k - 2; and it is called decreasing if (v(i)v(i)+ 1) > (v(i)+(1)v(i)+2) for all i = 1, . . . , k - 2. We say that P is monotone if it is increasing or decreasing. A rooted tree T in an edge-ordered graph is called monotone if either every path from the root to a leaf is increasing or every path from the root to a leaf is decreasing. Let G be a graph. In a straight-line drawing D of G, its vertices are drawn as different points in the plane and its edges are straight line segments. Let (alpha) over bar (G) be the largest integer such that every edge-ordered straight-line drawing of G contains a monotone non-crossing path of length (alpha) over bar (G). Let (tau) over bar (G) be the largest integer such that every edge-ordered straight-line drawing of G contains a monotone non-crossing complete binary tree of (tau) over bar (G) edges. In this paper we show that (alpha) over bar (K-n) = Omega(log log n), (alpha) over bar (K-n) = O(log n), (tau) over bar (K-n) = Omega(log log log n) and (tau) over bar (K-n) = Omega(root n log n).
Subjects

Erdos problem

discrete geometry

...
Universidad de Santiago de Chile Avenida Libertador Bernardo O'Higgins nº 3363. Estación Central. Santiago Chile. admin.dspace@usach.cl © 2023 The DSpace CRIS Project - Modificado por VRIIC USACH.
...